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In an earlier lecture, | talked about the idea of “complex frequency” s,
wheres =0 + jw.

Using such a concept of “complex frequency” allows us to analyse signals and
systems with better generality.

In this lecture, we will restrict ourselves to just consider the theoretical foundation
of frequency domain analysis where we assume o = 0. In particular, we will
examine the mathematics related to Fourier Transform, which is one of the most

important aspects of signal processing.
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Relationship between exponentials and sinusoids

+ Euler's formula: — jot 1 o—jot
e/®t = cos(wt) + jsin(wt) cos(wt) = e te
2
—jot _ _ P elot _ g—jwt
e cos(—wt) + jsin(—wt) sin(wt) = -
= cos(wt) — jsin(wt) J

¢ Therefore, in signal analysis, we usual regard “frequency” to be © in the
exponential vector e/©t,

+ The frequency spectrum is therefore a plot of the amplitude (and phase)
projected onto exponential components ¢’ for different w.

Al
0.5 0.5
T T w=2xf
5 = "G — rad/sec
cos(wt)| 0 ‘
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Before we consider Fourier Transform, it is important to understand the relationship

between sinusoidal signals and exponential functions. So far we have been using
sine and cosine functions because they are physically realisable and easy to
understand. However, in signal processing, we often use the exponentials et o

represent the “bases functions”, i.e. the underlying building blocks to a signal.

Euler’s equations provide the link between ¢t and the sine/cosine functions.
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e/t viewed as a VECTOR

+ /%t s the building block, each at different frequency w.
+ Can be viewed as a VECTOR as show below.

* The magnitude of the vector |eiot | is 1.

» This vector is rotating in a complex plane at a rate of » rads/sec in the

direction shown.

+ cos(ot) and sin(wt) are just the projection of the this vector on the REAL (x-
axis) and IMAGINERY (y-axis) axes in this diagram.
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What is the physical interpretation of the exponential term: ¢/ ? We can regard this
as a VECTOR with unit magnitude, rotating in a complex plane at a rate of  rads/sec
in the direction shown. Unity vector because the magnitude of the vector |&®' | is 1.

Now cos(mt) and sin(mt) are just the projection of the this vector on the REAL (x-axis)

and IMAGINERY (y-axis) axes in this diagram.

There are two important implications of
this view of the spectrum:

1. There are both +ve and —ve
frequency components in signals.
In fact we need both together in
order to make physical signals such
as the cosine or sine waves.

2. The +ve & -ve components are
symmetrical (or antisymmetrical)
for real signals.

Im (j)

. Direction of rotation
e ej(!)[
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Fourier Series in three forms

x'r“(l)

-1, _ T 0 Ty Ty
2

x(t) = ag + Yg=q(a, cosnwyt + by, sinnwgt )

To To
2 2
a, = —f x(t) cosnwytdt b, = —f x(t) sinnwyt dt
0 0

- Cn = ’az + b2
x(t) = Co + Z Cy, cos(nwot + 6,) " T
n=1

b
— n
0, = tan™?! (—)
an
To/z
x(t) = X% D, eJ(nwot+6y) D, = T_O J x(t)e Inwot e
_To/z
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Here is a quick reminder of the definition of Fourier Series.

Everlasting exponentials provides us with a third form of expressing the Fourier

series representation of a periodic signal as shown in this slide.
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Definition of Fourier Transform

¢ The forward and inverse Fourier Transform are defined for aperiodic

signal as: % :
x(1) Xw)=Fx({t)] = / x(e 'dt <L

o0

x(t) = F ' [X(w)] = i /00 X (w)e’”dw

2R I

0

+ Fourier series is used for periodic signals.

x(t) = ¥% D, efMwot+ o)
1 To/z
D,=— f x(t)e /m@otdt
To
_To/z
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Here is the formal definition of the Fourier Transform. It is important to note that
the Fourier Transform as defined in this equation here is applicable only to
aperiodic signals. This is because the limits of the integral are from -o= to +o0.

You can also interpret the term: X(w) = f_oooo x(t)e J®tdt ascomputing the
among of stuff (i.e. projection) in x(t) that can be found in the building block ¢l .

As can be seen in the inverse Fourier Transform equation, x(t) is made up of adding
together (the integral) the weighted sum of ¢! components at all different
frequencies ®. The weighting for each frequency component at o is X(® ).

The 1/, scaling is to account for the relationship between frequency in Hz and in
rads/sec (f = o/2n).

Now you are more familiar with Fourier Series than Fourier Transform. So what’s the
difference? Fourier Transform is actually more “physically real” because any real-
world signal MUST have finite energy, and must therefore be aperiodic. Fourier
Series is applicable only to periodic signals, which has infinite signal energy.
However, it turns out that Fourier series is most useful when using computers to
process signals. As we will see in a later lecturer, Discrete Fourier Transform is
based on Fourier Series.

The main difference between the two is that for Fourier Series, since the signal is
periodic, frequency components are discrete and are INTEGRAL MULTIPLE of a base
frequency known as the fundamental frequency fo. fo is 1/To, where To is the
periodicity of the signal (i.e. period of repetition).
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Define three useful functions

¢ A unit rectangular window function rect(x):

0 |x|>3 1| reet @ | reet (£)
rect(x) =<¢ 1 x| = 2
- - x—>
1 lxl<3 “_1I o i T 0 T
- 2 2 2 2
+ The unit impulse function &(t) (Dirac impulse):
Unit Impulse 5
§1)=0 t#£0 ®
(0.¢]
/ é(t)dt =1
-0
10 o
+ Interpolation function sinc(x):
, sin x , sinTx
sinc (x) = — or sinc (x) =
X TX
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Here are three “theoretic” functions or waveforms that pop up often in signal
processing. Although they are theoretical, they allow us to model real-world
signals in a way that helps understanding.

Firstly is the rectangular function, which we often call this a “window” because
when we multiple it with a signal, it lets some signals through, and blocks others,
just like a window letting in a specific view.

Second is something we already considered in Lecture 1, the unit impulse function
(or Dirac Function). As we will see, this has an important role in signal processing
and signal modeling, particularly as we SAMPLE a continuous time signal to get a
discrete time signal.

Finally, there is this interesting sinc(x) = Sl—zx function, which we will consider in

some details in subsequent slides.
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More about sinc(x) function

+ sinc(x) is an even function of x.

+ sinc(x) =0 when sin(x) =0
except when x=0, i.e. x = £,
+2n, £3n.....

) sin x
sinc (x) = —
X

o sinc(0) = 1 (derived with e e, | R
L’Hopital’s rule) et \/ """

o sinc(x) is the product of an F |
oscillating signal sin(x) and a —
monotonically decreasing
function 1/x. Therefore it is a ; sine (%2)
damping oscillation with period
of 2r with amplitude decreasing
as 1/x. i 9 W W —
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The sinc-function is important in signals. It can be view as an oscillatory signal
sin(x) with its amplitude monotonically decreasing as time goes to *infinity.

At time zero, sinc(0) = 1 (can be proved, but we will not do so here). Asx > *oo
sinc(x) =2 0.

The period of oscillation is governed by the sin(x) term.
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Fourier Transform of  x(t) = rect(t/t)

¢ Evaluation: 00 ¢ . x(1)
X(w) = / rect <A> e/ dt
s T
el g .o ==
¢ Since rect(t/t) = 1 for -1/2 < t < 1/2 and 0 otherwise 2 4

. (ot . (ot
/2 . 1 2sin = sin > 7
X(w) — / e dt _ __.-(e—jmr/Z _ ejmr/E) — _ = rsinc(w—>
—1/2 jo w (w_r>
2

x(1)

LIk a1
2 2
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The reason that sinc-function is important is because the Fourier Transform of a
rectangular window rect(t/t) is a sinc function.

This is interesting because if we extract a section of a signal to analyse, and obtain its
spectrum (via Fourier Transform), we are effectively multiplying the signal with a
rectangular function (rect()). Therefore, we can expect that the original signal’s
frequency spectrum will, in some way, be modified by this multiplication process.

It turns out that indeed the frequency spectrum of the original signal is changed
according to the sinc function — the spectral representation of the rectangular
window! The way such “modification” is done is through a process known as
“convolution”, something we will study a bit later.
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Fourier Transform of unit impulse x(t) = 3(t)

+ Using the sampling property of the impulse, we get:

o0

FI8()] = / 8(t)e “dt = 1

+ IMPORTANT — Unit impulse contains COMPONENT AT EVERY

FREQUENCY.
(1) <=1
x(t) = 8(1)
<>
lo t—>
PYKC 14 Jan 2026 DESE50002 - Electronics 2 Lecture 4 Slide 9

Let us return to the unit impulse function 6(t) or the delta function. The FT of 5(t) is
very simple: a constant 1. What does this mean? It means that to make up d(t),
we need infinite number of equal frequency components!

Or another way of looking at it, an impulse contains ALL frequencies. Of course this
is only a mathematical model. We cannot have a real-world signal with ALL
frequency components. However, we can approximate an impulse by having a very
narrow pulse, as compared to the window width of the signal.
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Inverse Fourier Transform of §(w)

+ Using the sampling property of the impulse, we get:

1 ; 1
—1 - jot e
F [§(w)] = - / S(w)e’"dw -

- T

+ Spectrum of a constant (i.e. d.c.) signal x(t) = 1 is an impulse 273(®).

1 ‘
— = () or | & 2né(w)
2
x() =1 X(w) = 2w8(w)
1
0 t—> 0 w >
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What is the inverse Fourier Transform of an impulse in the frequency spectrum?

The integral term is zero everywhere, except when © = 0, then 8(w) = 1. But when
® =0, e/ = 1. Therefore the integral term (which is really area under the curve) is

simply = 1.

Therefore, if the impulse is at zero frequency, (at ® = 0), the time domain
equivalent signal is simply a DC voltage (i.e. a constant). You are familiar with this
from the First Year — DC signal is simply one that has zero frequency!
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Inverse Fourier Transform of §(o - o)

+ Using the sampling property of the impulse, we get:

1 i _ 1
F 8w — wy)] = — / §(w — wp)e’ dw = —e/™
21 J-x 2T

+ Spectrum of an everlasting exponential eivot is a single impulse at w=wy.

%eiw"’ — §(w — wy)
or

e/ = 27é(w — wy)
and

e 7 — 278(w + wp)
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If the impulse is at a non-zero frequency (at ® = ®() ) in the frequency domain (i.e.

an impulse in the spectrum), we have an everlasting exponential ¢! at ® = ® in
the time domain.

In other words, the Fourier Transform of an everlasting exponential €0t is an
impulse in the frequency spectrum at ® = ® .
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Fourier Transform of everlasting sinusoid cos ot

+ Remember Euler's formula:  cos wyt = 1(e/" 4 e=/*0")

+ Use results from previous slide, we get:

cos wot <= m[(w + wy) + d(w — wy)]

+ Spectrum of cosine signal has two impulses at positive and negative
frequencies.

x(1) v 1 T
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An everlasting exponential et is a mathematical model. It has both real part and
imaginary part (see Slide 2).

In order to get a “real-world” signal such as an everlasting cosine wave, we need to
have both the positive and negative frequency components. Using Euler formula,
we get:

COS wof — .’l;(ej(u()l + e—-jcu()l)

So, from the previous slide, we can conclude that the spectrum of an everlasting
cosine signal has two impulses at @y and —®,, and the magnitude is m.
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Fourier Transform of any periodic signal

+ Fourier series of a periodic signal x(t) with period T, is given by:

o0
. 2
X(f) = D”ej"wul Wy = —
> h
+ Take Fourier transform of both sides, we get:
o0
X(w) =2n Z D, 8(w — nwy)
n=-00
¢ This is rather obvious!
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What about the Fourier Transform of a periodic signal? The easiest way to think
about this is to first represent the periodic signal in Fourier Series form. That is, the
periodic signal is a sum (not integral) of everlasting exponentials at discrete
frequencies, where the frequencies are integral multiple of the fundamental
frequency mq. (@ is determined by the periodicity of the signal).

Based on what we know from the previous slide, that the FT of an everlasting
exponential is an impulse at the corresponding frequency, we can conclude that the
FT of a periodic signal (i.e. its spectrum) consists of weighted impulses at no,, where
is all +ve and —ve integers, and the weight is D,,, the Fourier coefficient for the nth
harmonic.
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Fourier Transform of a unit impulse train

+ Consider an impulse train 5, ()= i(g(, —nT})

o The Fourier series of this impulse train can be shown to be:

- ; 27 1
— Jnayt — —
o, ()= ZDne where o, = T and D, =—
—© 0 0
+ Therefore using results from the last slide (slide 13), we get:
i) S 2
X(w) = — d(w — nay) Wy = —
= 6008(00 (CI))
87, PN0)
1 FT
=2, -1y IO Ty 2T, r=> —2w) —w, I() wy 20, w—>
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Finally, let us consider the FT of an impulse train —i.e. a periodic sequence of
impulses, at interval T;. We can show that the Fourier series of an impulse train is
simply sum of everlasting exponentials at the fundamental frequency and its
harmonics, and the weighting Dn is the constant 1/To:

- ; 2 1
o, (1) = ZDneJ”“’Ot where @, = Tﬂ and D, =—

0 0

Using our results from the previous slide, we can conclude that the FT of a period
impulse train in the time domain is a series of impulses in the frequency domain—a
beautiful result!
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Fourier Transform Table (1)

x(f)

e u(t)
eu(—t)
e-a]r|

te “u(t)
tne—alu ([)
3(2)

1

eJot

X(w)
: 0
>
a+ jo “
1
- a>0
a—jow
2a
2 +(1)j a>0
a 2
1 0
—_— a>
(a+ jw)?
n!
——r 0
(a 4 jw)n+l a.>
1
276 (w)

278 (w — @)
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| have provided here and in the next two slides a table of signals (functions) and
their Fourier Transform in a closed-form. DO NOT MEMBERISE ANY OF THESE.
They are provided here as a reference — something for you to look up in the future.

In my exams, | will NOT require you to remember any of these. | may, however, ask
you to derive some simple cases from FIRST PRINCIPLE.

Electronics 2
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Fourier Transform Table (2)

L. SR
9 cos wyt

10 sin wyt

11 u(t)

12 sgnt

13 cos wyt u(t)

14 sin wot u(t)

15 e “'sin wot u(t)

16 e %" cos wyt u(t)

X(w)

7[8(w — wp) + 8(w + wp)]
J[d(w + wy) — 8(w — ay)]

1
mé(w) + —
jo
2

jo
T j @
E[s(w—wo)+8(w+wo)]+ 2]

ol

T @,
?[5(0)—0)0)—5(@4“0)0)]4’ —
J wy —

wo
(a+ jo)? + ]
a+ jo
(a+ jw) + w}

w, — w*
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Fourier Transform Table (3)

X(w)

No x(f)
16 e % cos wyt u(t)
t
74 rect (-—)
T
w
18 — sinc (Wt)
b4
t
19 A (-)
T
20 E sinc’ &
2w 2
2 Z 8(t —nT)
22 e ne

a+ jo
@+ jw)? + wj

(%)
Tsinc ( —
2

wy Z 8(w — nawy)

n=-—00

o /271e—”2"‘:/2

a=>0
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Three Big Ideas

1. Euler formula provides an alternative way to represent sine and cosine
functions in terms of e/®t and e~/®t.
ejo)t + e—jmt ej“)t — e‘j“)t
sin(wt) = ——— —

cos(wt) = — 2

2. Extracting a portion of a signal x(t) for -t/2 < t < t /2 can be modelled by
multiplying x(t) by the rectangular function rect(x/ 7).

3. The Fourier Transform of an infinite train of unit impulses is again an
infinite train of unit impulses.

5=
1(0) FT w8,,(1)
1
LE N ] LR ]
LN ] LN ]
-2, -T | 0 Ty 2T, = —2wy —w, I 0 oy 20y o>
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Here are this week’s three Big Ideas. You are encouraged to discuss with your lab
partner and other classmates to make sure that you understand all three ideas.
Even more useful is to also remember them!
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