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In an earlier lecture, I talked about the idea of “complex frequency” s, 
 where 𝑠 = 𝜎 + 𝑗𝜔.  

Using such a concept of “complex frequency” allows us to analyse signals and 
systems with better generality.

In this lecture, we will restrict ourselves to just consider the theoretical foundation 
of frequency domain analysis where we assume 𝜎 = 0.  In particular, we will 
examine the mathematics  related to Fourier Transform, which is one of the most 
important aspects of signal processing.
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Before we consider Fourier Transform, it is important to understand the relationship 
between sinusoidal signals and exponential functions.  So far we have been using 
sine and cosine functions because they are physically realisable and easy to 
understand.  However, in signal processing, we often use the exponentials  ejwt to 
represent the “bases functions”, i.e. the underlying building blocks to a signal.  
Euler’s equations provide the link between ejwt and the sine/cosine functions.
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Relationship between exponentials and sinusoids
 Euler’s formula:

 Therefore, in signal analysis, we usual regard “frequency” to be  w in the 
exponential vector 𝑒!"#.

 The frequency spectrum is therefore a plot of the amplitude (and phase) 
projected onto exponential components         for different w. e jωt
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cos 𝜔𝑡 =
𝑒!"# + 𝑒$!"#
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sin 𝜔𝑡 =
𝑒!"# − 𝑒$!"#

2𝑗

𝑒!"# = cos 𝜔𝑡 + 𝑗𝑠𝑖𝑛(𝜔𝑡)

𝑒$!"# = cos −𝜔𝑡 + 𝑗𝑠𝑖𝑛 −𝜔𝑡

= cos 𝜔𝑡 − 𝑗𝑠𝑖𝑛 𝜔𝑡
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What is the physical interpretation of the exponential term: ejwt  ?  We can regard this 
as a VECTOR with unit magnitude, rotating in a complex plane at a rate of w rads/sec 
in the direction shown.  Unity vector because the magnitude of the vector  |ejwt | is 1.
Now cos(wt) and sin(wt) are just the projection of the this vector on the REAL (x-axis) 
and IMAGINERY (y-axis) axes in this diagram.

Re

Im (j)There are two important implications of 
this view of the spectrum:
1. There are both +ve and –ve 

frequency components in signals.  
In fact we need both together in 
order to make physical signals such 
as the cosine or sine waves.

2. The +ve & -ve components are 
symmetrical (or antisymmetrical) 
for real signals.
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𝑒345 viewed as a VECTOR

Re

Im (j)

• 𝑒!"# is the building block, each at different frequency ω.
• Can be viewed as a VECTOR as show below.
• The magnitude of the vector  |ejwt | is 1. 
• This vector is rotating in a complex plane at a rate of w rads/sec in the 

direction shown.
• cos(wt) and sin(wt) are just the projection of the this vector on the REAL (x-

axis) and IMAGINERY (y-axis) axes in this diagram.
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Here is a quick reminder of the definition of Fourier Series.

Everlasting exponentials provides us with a third form of expressing the Fourier 
series representation of a periodic signal as shown in this slide.
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Fourier Series in three forms
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Here is the formal definition of the Fourier Transform.  It is important to note that 
the Fourier Transform as defined in this equation here is applicable only to 
aperiodic signals.  This is because the limits of the integral are from -∞ to +∞.

You can also interpret the term:   𝑋 𝜔 = ∫!"
" 𝑥(𝑡)𝑒!#$%𝑑𝑡    as computing the 

among of stuff (i.e. projection) in x(t)  that can be found in the building block ejwt . 
As can be seen in the inverse Fourier Transform equation, x(t) is made up of adding 
together (the integral) the weighted sum  of  ejwt components at all different 
frequencies w.  The weighting for each frequency component at w is X(w ).  
The ⁄& '( scaling is to account for the relationship between frequency in Hz and in 
rads/sec (f = w/2π ).
Now you are more familiar with Fourier Series than Fourier Transform. So what’s the 
difference?  Fourier Transform is actually more “physically real” because any real-
world signal MUST have finite energy, and must therefore be aperiodic.  Fourier 
Series is applicable only to periodic signals, which has infinite signal energy.  
However, it turns out that Fourier series is most useful when using computers to 
process signals.  As we will see in a later lecturer, Discrete Fourier Transform is 
based on Fourier Series.
The main difference between the two is that for Fourier Series, since the signal is 
periodic, frequency components are discrete and are INTEGRAL MULTIPLE of a base 
frequency known as the fundamental frequency fo.  fo is 1/To, where To is the 
periodicity of the signal (i.e. period of repetition).
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Definition of Fourier Transform

 The forward and inverse Fourier Transform are defined for aperiodic 
signal as:

 Fourier series is used for periodic signals.



Electronics 2 6

Here are three “theoretic” functions or waveforms that pop up often in signal 
processing.  Although they are theoretical, they allow us to model real-world 
signals in a way that helps understanding.

Firstly is the rectangular function, which we often call this a “window” because 
when we multiple it with a signal, it lets some signals through, and blocks others, 
just like a window letting in a specific view. 

Second is something we already considered in Lecture 1, the unit impulse function 
(or Dirac Function).  As we will see, this has an important role in signal processing 
and signal modeling, particularly as we SAMPLE a continuous time signal to get a 
discrete time signal.

Finally, there is this interesting 𝐬𝐢𝐧𝐜 𝐱 = 𝐬𝐢𝐧 𝒙
𝒙   function, which we will consider in 

some details in subsequent slides.
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Define three useful functions

 A unit rectangular window function rect(x):

 The unit impulse function d(t) (Dirac impulse):

 Interpolation function sinc(x):

        or 



Electronics 2 7

The sinc-function is important in signals.  It can be view as an oscillatory signal 
sin(x) with its amplitude monotonically decreasing as time goes to ±infinity.  
At time zero, sinc(0) = 1 (can be proved, but we will not do so here).  As x à ±∞  
sinc(x) à 0.
The period of oscillation is governed by the sin(x) term.
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More about sinc(x) function

 sinc(x) is an even function of x.

 sinc(x) = 0 when sin(x) = 0 
except when x=0, i.e. x = ±p, 
±2p, ±3p…..

 sinc(0) = 1 (derived with 
L’Hôpital’s rule)

 sinc(x) is the product of an 
oscillating signal sin(x) and a 
monotonically decreasing 
function 1/x.  Therefore it is a 
damping oscillation with period 
of 2p with amplitude decreasing 
as 1/x.
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The reason that sinc-function is important is because the Fourier Transform of a 
rectangular window rect(t/t) is  a sinc function.

This is interesting because if we extract a section of a signal to analyse, and obtain its 
spectrum (via Fourier Transform), we are effectively multiplying the signal with a 
rectangular function (rect()).  Therefore, we can expect that the original signal’s 
frequency spectrum will, in some way, be modified by this multiplication process. 

It turns out that indeed the frequency spectrum of the original signal is changed 
according to the sinc function – the spectral representation of the rectangular 
window!  The way such “modification” is done is through a process known as 
“convolution”, something we will study a bit later.
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Fourier Transform of     x(t) = rect(t/t)

 Evaluation:

 Since rect(t/t) = 1 for -t/2 < t < t/2 and 0 otherwise 

⇔

Bandwidth » 2p/t
FT

FT
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Let us return to the unit impulse function d(t) or the delta function.  The FT of d(t) is 
very simple: a constant 1.  What does this mean?  It means that to make up d(t) , 
we need infinite number of equal frequency components!

Or another way of looking at it, an impulse contains ALL frequencies.  Of course this 
is only a mathematical model.  We cannot have a real-world signal with ALL 
frequency components.  However, we can approximate an impulse by having a very 
narrow pulse, as compared to the window width of the signal.
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Fourier Transform of  unit impulse  x(t) = d(t)

 Using the sampling property of the impulse, we get:

 IMPORTANT – Unit impulse contains COMPONENT AT EVERY 
FREQUENCY.
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What is the inverse Fourier Transform of an impulse in the frequency spectrum? 

The integral term is zero everywhere, except when w = 0, then d(w) = 1.  But when 
w = 0, ejwt = 1.  Therefore the integral term (which is really area under the curve) is 
simply = 1.

Therefore, if the impulse is at zero frequency, (at w = 0), the time domain 
equivalent signal is simply a DC voltage (i.e. a constant).  You are familiar with this 
from the First Year – DC signal is simply one that has zero frequency!
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Inverse Fourier Transform of  d(w)

 Using the sampling property of the impulse, we get:

 Spectrum of a constant (i.e. d.c.) signal x(t) = 1 is an impulse 2pd(w).

or
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If the impulse is at a non-zero frequency (at w = w0 ) in the frequency domain (i.e. 
an impulse in the spectrum),  we have an everlasting  exponential ejwt  at w = w0 in 
the time domain.

In other words, the Fourier Transform of an everlasting exponential ejw0t is an 
impulse in the frequency spectrum at w = w0 .
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Inverse Fourier Transform of  d(w - w0)

 Using the sampling property of the impulse, we get:

 Spectrum of an everlasting exponential  ejw0t   is a single impulse at w=w0.

and

or
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An everlasting  exponential ejwt  is a mathematical model.  It has both real part and 
imaginary part (see Slide 2).  

In order to get a “real-world” signal such as an everlasting cosine wave, we need to 
have both the positive and negative frequency components. Using Euler formula, 
we get:

So, from the previous slide, we can conclude that the spectrum of an everlasting 
cosine signal has two impulses at w0 and –w0, and the magnitude is π.
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Fourier Transform of everlasting sinusoid cos w0t

 Remember Euler’s formula:

 Use results from previous slide, we get:

 Spectrum of cosine signal has two impulses at positive and negative 
frequencies.
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What about the Fourier Transform of a periodic signal?  The easiest way to think 
about this is to first represent the periodic signal in Fourier Series form.  That is, the 
periodic signal is a sum (not integral) of everlasting exponentials at discrete 
frequencies, where the frequencies are integral multiple of the fundamental 
frequency w0.  (w0 is determined by the periodicity of the signal). 

Based on what we know from the previous slide, that the FT of an everlasting 
exponential is an impulse at the corresponding frequency, we can conclude that the 
FT of a periodic signal (i.e. its spectrum) consists of weighted impulses at nwo, where 
is all +ve and –ve integers, and the weight is Dn, the Fourier coefficient for the nth 
harmonic.
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Fourier Transform of any periodic signal

 Fourier series of a periodic signal x(t) with period T0 is given by:

 Take Fourier transform of both sides, we get:

 This is rather obvious!
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Finally, let us consider the FT of an impulse train – i.e. a periodic sequence of 
impulses, at interval T0.  We can show that the Fourier series of an impulse train is 
simply sum of everlasting exponentials at the fundamental frequency and its 
harmonics, and the weighting Dn is the constant 1/To:

Using our results from the previous slide, we can conclude that the FT of a period 
impulse train in the time domain is a series of impulses in the frequency domain – a 
beautiful result!

!
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Fourier Transform of a unit impulse train

 Consider an impulse train 

 The Fourier series of this impulse train can be shown to be:

 Therefore using results from the last slide (slide 13), we get:
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I have provided here and in the next two slides a table of signals (functions) and 
their Fourier Transform in a closed-form.  DO NOT MEMBERISE ANY OF THESE.  
They are provided here as a reference – something for you to look up in the future. 

In my exams, I will NOT require you to remember any of these. I may, however, ask 
you to derive some simple cases from FIRST PRINCIPLE.

Lecture 4 Slide 15PYKC  14 Jan 2026 DESE50002 -  Electronics 2

Fourier Transform Table (1)
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Fourier Transform Table (2)
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Fourier Transform Table (3)
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Here are this week’s three Big Ideas.  You are encouraged to discuss with your lab 
partner and other classmates to make sure that you understand all three ideas.  
Even more useful is to also remember them!
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Three Big Ideas

1. Euler formula provides an alternative way to represent sine and cosine 
functions in terms of 𝑒!"# and 𝑒$!"#.

2. Extracting a portion of a signal x(t) for -t/2 ≤ t ≤ t /2 can be modelled by 
multiplying x(t) by the rectangular function rect(x/ t).

3. The Fourier Transform of an infinite train of unit impulses is again an 
infinite train of unit impulses.

cos 𝜔𝑡 =
𝑒!"# + 𝑒$!"#

2
sin 𝜔𝑡 =

𝑒!"# − 𝑒$!"#

2𝑗

FT


